KLD-Sampling: Adaptive Particle Filters

نویسنده

  • Dieter Fox
چکیده

Over the last years, particle filters have been applied with great success to a variety of state estimation problems. We present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets on-the-fly. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based representation of the particle filter. The name KLD-sampling is due to the fact that we measure the approximation error by the Kullback-Leibler distance. Our adaptation approach chooses a small number of samples if the density is focused on a small part of the state space, and it chooses a large number of samples if the state uncertainty is high. Both the implementation and computation overhead of this approach are small. Extensive experiments using mobile robot localization as a test application show that our approach yields drastic improvements over particle filters with fixed sample set sizes and over a previously introduced adaptation technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization

We present a statistical approach to adapting the sample set size of particle filters on-thefly. The key idea of the KLD-sampling method is to bound the error introduced by the samplebased representation of the particle filter. Thereby, our approach chooses a small number of samples if the density is focused on a small subspace of the state space, and it chooses a large number of samples if the...

متن کامل

Adapting sample size in particle filters through KLD-resampling

This letter provides an adaptive resampling method. It determines the number of particles to resample so that the Kullback–Leibler distance (KLD) between distribution of particles before resampling and after resampling does not exceed a pre-specified error bound. The basis of the method is the same as Fox’s KLD-sampling but implemented differently. The KLD-sampling assumes that samples are comi...

متن کامل

Adapting the Sample Size in Particle Filters Through KLD-Sampling

Over the last years, particle filters have been applied with great success to a variety of state estimation problems. In this paper we present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets during the estimation process. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based represen...

متن کامل

The 14th World Conference on Earthquake Engineering

A self adaptive particle filter method for structural system identification is presented in this paper. Such an adaptive technique that uses statistical methods to adapt the number of particles at each iteration. This method improves the efficiency of state estimation by adapting the size of sample sets during the estimation process through KLD-Sampling. Within this adaptation process the numbe...

متن کامل

Optimal Filtering for Non-parametric Observation Models: Applications to Localization and SLAM

In this work we address the problem of optimal Bayesian filtering for dynamic systems with observation models that cannot be approximated properly as any parameterized distribution. In the context of mobile robots this problem arises in localization and simultaneous localization and mapping (SLAM) with occupancy grid maps. The lack of a parameterized observation model for these maps forces a sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001